Solid-state nitrogen-15 nuclear magnetic resonance analysis of biologically reduced 2,4,6-trinitrotoluene in a soil slurry remediation.

نویسندگان

  • H Knicker
  • C Achtnich
  • H Lenke
چکیده

Soil contaminated with 2,4,6-trinitrotoluene (TNT) and spiked with [14C]- and [15N3]-TNT was subjected to an anaerobic-aerobic soil slurry treatment and subsequently analyzed by radiocounting and solid-state 15N nuclear magnetic resonance (NMR) spectroscopy. This treatment led to a complete disappearance of extractable radioactivity originating from TNT and almost all of the radioactivity was recovered in the insoluble soil fraction. As revealed by solid-state 15N NMR, a major fraction of partially reduced metabolites of TNT was immobilized into the soil during the early stage of the anaerobic treatment, although some of the compounds (i.e., aminodinitrotoluenes and azoxy compounds) were extractable by methanol. Considerable 15N intensity was assigned to condensation products of TNT metabolites. A smaller signal indicated the formation of azoxy N. This signal and the signal for nitro groups were not observed at the end of the anaerobic phase, revealing further reduction and/or transformation of their corresponding compounds. An increase of the relative proportion of the condensation products occurred with increasing anaerobic incubation. Aerobic incubation resulted in a further decrease of aromatic amines, presumably due to oxidative transformations or their involvement in further condensation reactions. The results of the study demonstrate that the anaerobic-aerobic soil slurry treatment represents an efficient strategy for immobilizing reduced TNT in soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporation of (15)N-TNT transformation products into humifying plant organic matter as revealed by one- and two-dimensional solid state NMR spectroscopy.

Solid-state double cross polarization magic angle spinning (DCPMAS) 15N 13C nuclear magnetic resonance (NMR) spectroscopy was applied to study the incorporation of TNT transformation products into humifying plant organic matter. For this approach, 13C-enriched plant material (Lolium perenne) was mixed with quartz sand and aerobically incubated for 11 months after addition of 15N(3)-2,4,6-trinit...

متن کامل

Bioremediation of 2,4,6-trinitrotoluene contaminated soil in slurry and column reactors.

The bioremediation of 2,4,6-trinitrotoluene (TNT) contaminated soil was performed on a laboratory scale. To compare bioremediation methods, a soil slurry reactor and a soil column reactor were operated and the effects of supplemental sources were investigated. Optimal conditions for the two bioremediation systems for the removal of TNT were obtained. In the soil slurry reactor, about 60% of the...

متن کامل

Complete dissipation of 2,4,6-trinitrotoluene by in-vessel composting

We demonstrate complete removal of 2,4,6-trinitrotoluene (TNT) in 15 days using an in-vessel composting system, which is amended with TNT-degrading bacteria strains. A mixture of TNT, food waste, manure, wood chips, soil and TNT-degrading bacteria consortium are co-composted for 15 days in an aerobic environment. Variations in the TNT degradation rates are assessed when composting reactors are ...

متن کامل

ERDC/EL TR-07-16, Photochemical Degradation of Composition B and Its Components

Products of photodecomposition of 2,4,6-trinitrotoluene (TNT) have been observed as a coating on TNT particles and as a fine powdered residue surrounding TNT particles on ranges receiving limited rainfall. The significance of photolysis of explosive formulations on training ranges is unknown. Therefore, photolysis of a common explosive formulation, Composition B, and its components in a soil ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 2001